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Statistics of certain models of evolution
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In a recent paper, Newman@J. Theo. Bio.189, 235 ~1997!# surveys the literature on power law spectra in
evolution, self-organized criticality and presents a model of his own to arrive at a conclusion that self-
organized criticality is not necessary for evolution. Not only did he miss a key model„Ecolab! that has a clear
self-organized critical mechanism, but also Newman’s model exhibits the same mechanism that gives rise to
power law behavior, as does Ecolab. Newman’s model is, in fact, a ‘‘mean field’’ approximation of a self-
organized critical system. In this paper, I have also implemented Newman’s model using the Ecolab software,
removingthe restriction that the number of species must remain constant. It turns out that the requirement of
constant species number is nontrivial, leading to a global coupling between species that is similar in effect to
the species interactions seen in Ecolab. In fact, the model must self-organize to a state where the long time
average of speciations balances that of the extinctions; otherwise, the system either collapses or explodes. In
view of this, Newman’s model does not provide the hoped-for counterexample to the presence of self-
organized criticality in evolution, but does provide a simple, almost analytic model that can be used to
understand more intricate models such as Ecolab.@S1063-651X~99!09702-0#

PACS number~s!: 05.65.1b, 87.10.1e
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I. INTRODUCTION

Over the last five years, the notion that biological evo
tion is aself-organized critical phenomenonhas gained cur-
rency and, in particular, has been championed by Bak@1#
and Kauffman@2#. Self-organized critical phenomena a
characterized by a frustration between two processes.
archetypical example is that of a sandpile, where the proc
of adding sand to a sandpile to make the slope of that
steeper is opposed by the instability of the sandpile, wh
works to make the sandpile flatter once the slope pass
critical angle. One of the most obvious manifestations
criticality is a power law spectral behavior, although critica
ity is by no means necessary for this power law behavio
be manifested.

In a recent paper, Newman@3# surveyed the field to con
clude that the mechanism by which ecosystems are drive
criticality is not well understood, but that the evidence in t
fossil record for power law spectra of extinction event s
and species lifetimes is good. Sole´ et al. @4# present the bes
evidence yet that these distributions are power laws. H
ever, Newman missed an important model of evolution,Eco-
lab @5,6#, that is more general than those surveyed, and g
us the best idea yet of how evolution could be a se
organized critical phenomenon.

Newman goes further to introduce his own model of ev
lution to make the point that the coevolutionary avalanc
that all the other models~including Ecolab! exhibit are not
necessary for the observed power law behavior. He fur
claims that his model is not critically self-organized. How
ever, the mechanism that leads to power law behavio
Newman’s model is precisely the same as that in Ecolab,
that mechanism is of the nature of a frustration between
processes that characterizes Bak’s sandpile model.

*Electronic address: R.Standish@unsw.edu.au
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II. ECOLAB

In this section, we consider a model of evolution call
Ecolab. Ecolab~perhaps unfortunately! is both the name of a
model and a simulation system written by the author
implement that model. The ecology is described by a gen
alized Lotka-Volterra equation, which is perhaps the si
plest ecological model to use:

ṅi5r ini1(
j 51

nsp

b i j ninj . ~1!

Herer is the difference between the birth rate and death r
for each species, in the absence of competition or symbio
b is the interaction term between species, with the diago
terms referring to the species’ self-limitation, which is r
lated in a simple way to the carrying capacityKi for that
species in the environment byKi52r ib i i . In the literature
~e.g., Strobeck@7#, Case@8#! the interaction terms are ex
pressed in a normalized form,a i j 52Ki /r ib i j , anda i i 51
by definition.n is the species density.

These equations are simulated on a simulator calledEco-
lab @9#. The vectorsn andr are stored as dynamic arrays, th
size of which ~i.e., the system dimension! can change in
time.

A. Linear stability analysis

Linear analysis starts with the fixed point of Eq.~1!:

n̂52b21r , ~2!

whereṅ50. There is precisely one fixed point in the interi
of the space of population densities~i.e., n such thatni

.0) provided that all components ofn̂ are positive, giving
rise to the following inequalities:
1545 ©1999 The American Physical Society
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n̂i5~b21r ! i.0, ; i . ~3!

This interior space is denotedR
1

nsp mathematically.

There may also be fixed points on the boundary ofR
1

nsp,
where one or more components ofn are zero~corresponding
to an extinct species!. This is because the subecology wi
the living species only~i.e., with the extinct species re
moved! is equivalent to the full system.

The stability of this point is related to the negative de
niteness of derivative ofṅ at n̂. The components of the de
rivative are given by

]ṅi

]nj
5d i j S r i1(

k
b iknkD 1b i j ni . ~4!

Substituting Eq.~2! gives

]ṅi

]nj
U

n̂

52b i j ~b21r ! i . ~5!

Stability of the fixed point requires that this matrix b
negative definite. Since the (b21r ) i are all negative by virtue
of Eq. ~3!, this is equivalent tob being negative definite or
equivalently, that itsnsp eigenvalues all have negative re
parts. Taken together with the inequalities~3!, this implies
that 2nsp inequalities must be satisfied for the fixed point
be stable. This point was made by Strobeck@7#, in a slightly
different form. ~Note that Strobeck implicitly assumes th
( i r i n̂i /Ki.0, so comes to the conclusion that 2nsp21 con-
ditions are required.! If one were to randomly pick coeffi
cients for a Lotka-Volterra system, then it has a probabi
of 42nsp of being stable, i.e., one expects ecosystems to
come more unstable as the number of species increases@10#.

B. Permanence

While stability is a nice mathematical property, it h
rather less relevance when it comes to real ecologies.
example the traditional predator-prey system studied
Lotka and Volterra has a limit cycle. The fixed point is d
cidedly unstable, yet the ecology ispermanentin the sense
that both species’ densities are larger than some thres
value for all time. Hofbauer, Hutson, and Jansen@11# and
Law and Blackford@12# discuss the concept ofpermanence
in Lotka-Volterra systems, which is the property that there
a compact absorbing setM,R

1

nsp, i.e., once a trajectory o
the system has enteredM, it remains inM. They derive a
sufficient condition for permanence due to Jansen@13# of the
form

(
i

pi f i~ n̂B!5(
i

pi S r i2(
j

b i j n̂B j D .0, ' pi.0

~6!

for every n̂B equilibrium point lying on the boundary (n̂Bi
50 ' i ), provided the system isbounded~or equivalently
dissipative!. ~Boundedness is ensured in this model
choosing theb i j such thatb i j 1b j i <0, ; i , j . This pre-
cludes symbiosis, but does allow for unstable behavior.
@9# for a discussion of boundedness.! This condition is more
y
e-
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y
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s

e

general than stability of the equilibrium—the latter conditio
implies that a local neighborhood of the equilibrium is
absorbing set. Also, the averaging property of Lotka-Volte
systems implies that the equilibrium must lie in the positi
coneR

1

nsp. So Eq.~3! must still hold for permanence.

Consider the boundary pointsn̂B that are missing a single
speciesi. Then Jansen’s condition for these boundary poi
is

r i2(
j

b i j n̂B j.0. ~7!

This set of conditions is linearly independent. Let the nu
ber of such boundary points be denoted bynB<nsp. Then
the set of conditions~6! will have ranknB<n<nsp ~the num-
ber of linearly independent conditions!, so that the system
has at most a probability 22nsp2n of satisfying Jansen’s per
manence condition if the coefficients are chosen uniformly
random. Since stability is also sufficient for permanence,
probability lies between 42nsp and 22nsp2n.

Another rather important property isresistance to inva-

sion @8#. Consider a boundary equilibriumn̂B . If it is proof
against invasion from the missing species, then the full s
tem cannot be permanent. For the boundary points that m
a single species, this implies that condition~7! is necessarily
satisfied for permanence, along with Eq.~3!. The probability
of permanence is then bounded above by 22nsp2nB.

The important point to take away from this section is th
while a randomly selected ecology is more likely to be p
manent than to have a stable equilibrium, the likelihood
creases exponentially with increase in species number.

C. Mutation

Adding mutation involves adding an additional opera
to Eq. ~1!:

ṅ5r* n1n* bn1mutate ~m,r ,n!, ~8!

where * refers to elementwise multiplication. This opera
extends the dimension of the whole system, so is rather
usual. The precise form ofmutate is not germane to the
present argument; the interested reader is referred to the
vious publications describing it@5,6,9#. Suffice it to say that
it adds new species according to a stochastic mechanism
that we would expect the criticality result to be robust w
respect to changes of mutation algorithm employed.

D. Self-organized criticality

Let us consider what happens to the largest eigenvalu
b. Suppose that initially the system has a stable equilibriu
in which case all the eigenvalues have negative real part
mutations are added to the system, the largest eigenv
will increase towards zero. As it passes zero, the sys
destabilizes, and the system will start to exhibit limit cycl
or chaotic behavior. As further mutations are added to
system, permanence is no longer satisfied and an extinc
event will occur. This will restore permanency to the syste
and possibly even stability. So we have two frustrated p
cesses opposed to each other, the first, mutation, w
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FIG. 1. nsp as a function of time in the gener
alized Newman model. Time units are in tim
steps.
th
m
t

k’

m
n

ic

i-

sp
bu
at
t
in

is
e
e
e
la
n

s

he
e.

n

w
is

m
b

is
ust

and
s are

gh
e to
ber.

ed

, the
bal-
e
e
e
er

al
po-

me

the
tial

n-
-

e

builds up ecosystem complexity, and the second being
trend toward impermanency as the ecosystem becomes
complex. This is analogous to the sand being added to
top of the pile, and the stability of the sandpile slope in Ba
sandpile model.

III. THE NEWMAN MODEL

Newman has presented his model of evolution in a nu
ber of papers@14,15,3#; this model is largely equivalent to a
earthquake model presented in@16,17#. In the biological con-
text, the model has a fixed number of species, all of wh
feel environmental stress, denoted byh(t), which is random
variate with distributionpstress(h). Each species has an ind
vidual thresholdxi such that ifh.xi , speciesi becomes
extinct. These extinct species are then replaced by new
cies, with thresholds randomly assigned from some distri
tion pthresh(x). There is one further twist to the model, in th
the threshold values are allowed to drift over time in order
prevent the model from stagnating with every species hav
the maximum threshold.

The Ecolab software allows us to build a variant of th
model that allows the number of species to vary over tim
When the model was first implemented, the system und
went a ‘‘mutation catastrophe,’’ in which the number of sp
cies exploded. This is similar to what happens in the Eco
model when the mutation rate is set too high. Normally, o
would expect that the number of speciation events should
proportional to the number of species. However, this lead
an excess of speciation over extinctions.

The resolution of this conundrum is to require that t
stress valuesh be proportional to the number of species, i.
h5nsph8, where h8 is drawn from some distribution
pstress(h8). The justification for making this assumption ca
be seen by considering a simplified model of Ecolab~called
Ecolab––!, described in the next section. Of course, in Ne
man’s original model,nsp is a constant, and so his model
consistent with this modification.

Wilke and Martinetz@18# examined a similar model, in
which they label the mutation rateg, and consider finitef
rather thanf 50 as I do here. They too note the conundru
of exponential growth in species number, and resolve it
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introducing an arbitrary logistic constraint. My argument
that the reason for this logistic constraint is that species m
interact with each other, and the greater the number
strengths of these interactions, the greater the stresse
that are felt by the ecosystem.

It could be argued that theraison d’être of the Newman
model is to study the effect of coherent extinction throu
exogenous causes. However, these will always give ris
stress distributions that are independent of species num
However, the stress distribution will ultimately be dominat
by the term that does depend on the species number.

Once the stress values depend on species number
system self-organizes so that speciations and extinctions
ance on average. A trace ofnsp can be seen in Fig. 1, and th
distribution of lifetimes is seen in Fig. 2. The peak in th
curve att510 is an artifact of the simulation, and should b
ignored. The distribution actually has two regions, the inn
one 10!t!103 having a power law with exponent'21,
and the outer regiont@103 having exponent'22. By run-
ning the experiment at different mutation rates, the lifetimel
at which the distribution changed fromt21 to t22 was found
to be inversely proportional to the mutation rate.

In comparing the result of my variation with the origin
Newman model, it should be noted that the power law ex
nent in Newman’s original model is21 out to a time 1/f ,
and decays exponentially after that. In my version, the sa
power law exponent was observed out to 1/g, and then ap-
pears to change to a faster power law decay, although
error bars are sufficiently large not to rule out an exponen
decay. In each of these models, the lifetime 1/f or 1/g, re-
spectively, is roughly the lifetime that a maximally fit orga
ism ~one with a maximal valuexi) can survive before suc
cumbing to mutation pressures.

IV. THE ECOLAB –– MODEL

In this section, we will consider a simplification of th
Ecolab model where the interaction terms( jb i j nj are re-
placed by a random variateh i(t) from a suitable distribution:

ṅi5~r i2h i !ni . ~9!
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Sinceh i is effectively the sum of a large number of ind
pendent quantities, its distribution will tend to be norm
and the deviation~controlling how largeh i gets! will be
proportional tonsp, the connectance~proportion of nonzero
elements inb) and the interaction strength. This is wh
stresses in the Newman model must be proportional tonsp.
Whenh i exceedsr i for any significant period of time, spe
cies i becomes extinct. Sinceh i(t) is a continuous function
of n(t) which is itself a continuous function oft, there will
be a correlationh(t)h(t1t).0, ;t,t0 , 't0.0. Equa-
tion ~9! connects the full Ecolab model with the Newma
model.

In order to make the analysis simpler, we assume thani
are real values, rather than integers as in Ecolab. In orde
detect when extinction happens, we take an arbitrary thre
old s such that ifni,s, speciesi is extinct.

V. DISTRIBUTION OF SPECIES LIFETIMES

Figure 2 shows the distribution of species lifetimes~time
from speciation to extinction! in the augmented Newma
model. This figure is not normalized, since a power lawxa

has an infinite integral. So the abscissa of the graph is
significant but the slope is. The lines are fitted by line
regression. Authors often quote a correlation coefficie
however, this is generally meaningless on a log-log p
Even the value of the slope is meant to be an indication o
as the large relative error at high lifetime values can lead
significant errors in the computed slope.

Figure 3 shows the lifetime distribution for Ecolab, whic
has a slope of22 for lifetimes less than 100 but21 for
larger lifetimes. At still larger times (t@0.1/m), the distri-
bution turns over, decaying exponentially. Previously pu
lished versions of this graph@6# only show the smaller life-
time behavior.

Consider now the probabilityp(.tux) that a species with
thresholdx will become extinct after timet5t in the New-
man model. Since time is discrete in this model, this is s
ply the probability that the stressh does not exceedx for the
first t steps:

p~.tux!5F E
0

x

pstress~h!dhG t

. ~10!

Now the distributionp(.t) of species having lifetimest
is just the above quantity, integrated over the distribution
thresholds:

FIG. 2. Distribution of species lifetimes in the generalized Ne
man model with Gaussian stress distribution.
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p~.t!5E p~x!p~.tux!dx

5E pthresh~x!F E
0

x

pstress~h!dhG t

dx

5E
0

1

pthresh~x!jt
dx

dj
dj, ~11!

wherej5*0
xpstress(h)dh.

Assume the following inequalities hold:

pthresh~x!<K1pstress~x!, ; x,

>K0pstress~x!, ; x,xc , ' xc .
~12!

Without loss of generality,pthresh(x) is taken to be the uni-
form distribution between 0 and 1, and is zero outside t
interval.pstress(x) is positive for all positivex, with the large
x tail needed to establish power law behavior@15#. In this
case, the constantsK0 andK1 correspond to the inverses o
the maximum and minimum ofpthresh(x) over the unit inter-
val, andxc51. Let us introducejc5*0

xcpstress(x)dx as being
the change of variable equivalent ofxc . In the case of uni-
form threshold distribution, and monotonic stress distrib
tion, 12jc is the proportion of stress events that overwhe
the hardiest of species. The inverse of this proportion i
time scale above which the lifetime distribution must dec
exponentially. In order to observe power law behavior,
stress distribution must be chosen so thatjc'1.

Substituting Eq.~12! into Eq.~11! generates the following
inequality:

K0E
0

jc
pstress~x!jt

dx

dj
dj

<p~.t!<K1E
0

1

pstress~x!jt
dx

dj
dj,

K0

jc
t11

t11
<p~.t!<K1

1

t11
, ~13!

sincepstress(x)5dj/dx and wherejc5*0
xcpstress(x)dx.

Now p(t)5p(.t21)2p(.t), so the following in-
equality is obtained:

- FIG. 3. Distribution of species lifetimes in Ecolab.
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~K0jc
t2K1!t1K0jc

t

t~t11!
<p~t!<

~K12K0jc
t!t1K1

t~t11!
.

~14!

Assuming thatt!(12jc)
21,jc

t5@11t(12jc)#1•••'1,
this inequality may be simplified:

~K02K1!t1K0

t~t11!
<p~t!<

~K12K0!t1K1

t~t11!
. ~15!

This result indicates that there are two domains, the fi
being whent,K0 /(K12K0), where the lifetime distribu-
tion is a power law with exponent22. This domain is more
pronounced the closerK1 is to K2 , i.e., the closerpthresh(x)
is to pstress. The other domain occurs whent.K1 /(K1
2K0), where any power law will have an exponent less th
21. In between, there will be a transition between the t
domains. This result is not terribly strong, as the inequa
can also be satisfied by any distribution falling off faster th
a power law. However, it does contradict the results of
time-average approximation~TAA ! theory of Sneppen and
Newman @17# in the case of the Lorentzian distribution
where a power law with exponent 0~i.e., a flat distribution!
is predicted. While a flat distribution is manifestly ridiculou
others are not. The TAA predicts a power law of 1/3 for
power law stress distribution with exponent23/2. Figure 4
shows the observed lifetime distribution in this case, and
distribution never flattens out more thant21.

Now lets us turn our attention to the Ecolab–– model
see if a similar relationship can be derived. In what follow
the species indexi is dropped. Integrating Eq.~9! gives us

n~ t !5n0e*0
t r 2h~s!ds,

and taking logarithms gives

ln n~ t !5E
0

t

r 2h~s!ds,

sincen051 for all new species.
For the species to become extinct after timet5t, we

require

FIG. 4. Distribution of species lifetimes in the generalized Ne
man model, withpstress(h)}(h1s)23/2.
st

n
o
y
n
e

e

,

E
0

t

r 2h~s!ds. ln s, ; t,t. ~16!

Since time is discrete in this model,h(s) is a piecewise
constant function; therefore, the integral can be replaced
sum so that

(
i 50

t21

h i,rt 2 ln s, ; t,t. ~17!

Now inequality~17! defines a setM,Rt, and the prob-
ability of a species having a lifetime greater thant if its
reproduction rate isr is given by

p~.tur !5E
M

)
i 50

t21

pstress~h i !dh0dh1•••dht21 . ~18!

Lets us first deal with sufficient conditions for inequali
~17! to be satisfied, which are

h i,r 2 ln s/t, ; i<t ~19!

,r , as s,1. ~20!

Therefore, a lower bound forp(.tur ) is

p~.tur !>F E
2`

r

pstress~h!dhG t

. ~21!

Now consider the following relation:

n~ t11!5~11r 2h t!n~ t !.

For the species not to go extinct beforet5t, we requireh t
,11r , ; t<t. Therefore,

p~.tur !<F E
2`

~r 11!

pstress~h!dhG t

. ~22!

Now find constantsK0 andK1 so that

K0pstress~r !<pr~r !, ; r ,r c, ' r c ,

<K1pstress~r 11!, ~23!

where pr(r ) is the probability distribution of reproduction
rates. Sincep(.t)5*pr(r )p(.tur )dr, we find

K0E r c
pstress~r !F E

2`

r

pstress~h!dhG t

dr<p~.t!

<K1E pstress~r 11!F E
2`

~r 11!

pstress~h!dhG t

dr,

K0rc
t

t
<p~.t!<

K1

t
. ~24!

Now, sincep(t)5p(.t)2p(.t11),

K0rc
t

t
2

K1

t11
<p~t!<

K1

t
2

K0rc
t

t11
, ~25!

-
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~K0rc
t2K1!t1K0rc

t

t~t11!
<p~t!<

~K12K0rc
t!t1K1

t~t11!
.

~26!

Again, like the Newman model, we have two domains
power law possible, an inner domain where the power law
22, and an outer domain where any power law is capped
21. This is what is seen in Fig. 3.

VI. CONCLUSION

The Newman model owes its power law behavior to mu
the same mechanism as does Ecolab, although the ass
d
,

n
,

n
.

f
is
y

h
p-

tion of constant species number hides essential interspe
connections. Both models demonstrate a power law expo
near22 at small time scales, agreeing with the fossil reco
~after Sneppenet al. @19#!, turning into a gentler power law
with exponent less than21 at longer times.
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@4# R. Solé, S. C. Manrubia, M. Benton, and P. Bak, Nature~Lon-

don! 388, 764 ~1997!.
@5# R. K. Standish, inComplex Systems: Mechanism of Adaptio,

edited by R. J. Stonier and X. H. Yu~IOS Press, Amsterdam
1994!; Complexity International, Vol. 2 ~http://www.
csu.edu.au/ci!.

@6# R. K. Standish, inComplex Systems: From Local Interactio
to Global Phenomena, edited by R. Stocker, H. Jelinek, B
Durnota, and T. Bossomeier~IOS, Amsterdam, 1996!, pp.
263–271; Complexity International, Vol. 3 ~http://www.
csu.edu.au/ci!.

@7# C. Strobeck, Ecology54, 650 ~1973!.
@8# T. J. Case, Bio. J. Linnean Soc.42, 239 ~1991!.
@9# R. K. Standish ~http://parallel.hpc.unsw.edu.an/rks.ecola
html!.

@10# R. M. May, Stability and Complexity in Model Ecosystem
~Princeton University Press, Princeton, NJ, 1974!.

@11# J. Hofbauer, V. Hutson, and W. Jansen, J. Math. Biol.25, 553
~1987!.

@12# R. Law and J. C. Blackford, Ecology73, 567 ~1992!.
@13# W. Jansen, J. Math. Biol.25, 411 ~1987!.
@14# M. E. J. Newman, Proc. R. Soc. London, Ser. B263, 1605

~1996!.
@15# M. E. J. Newman, Physica D107, 293 ~1997!.
@16# M. E. J. Newman and K. Sneppen, Phys. Rev. A54, 6226

~1996!.
@17# K. Sneppen and M. E. J. Newman, Physica D110, 209~1997!.
@18# C. Wilke and T. Martinetz, Phys. Rev. E56, 7128~1997!.
@19# K. Sneppen, P. Bak, H. Flyvbjerg, and H. H. Jansen, Pr

Natl. Acad. Sci. USA92, 5209~1995!.


