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In a recent paper, Newmdd. Theo. Bio.189, 235(1997] surveys the literature on power law spectra in
evolution, self-organized criticality and presents a model of his own to arrive at a conclusion that self-
organized criticality is not necessary for evolution. Not only did he miss a key n{&delah that has a clear
self-organized critical mechanism, but also Newman’s model exhibits the same mechanism that gives rise to
power law behavior, as does Ecolab. Newman's model is, in fact, a “mean field” approximation of a self-
organized critical system. In this paper, | have also implemented Newman’s model using the Ecolab software,
removingthe restriction that the number of species must remain constant. It turns out that the requirement of
constant species number is nontrivial, leading to a global coupling between species that is similar in effect to
the species interactions seen in Ecolab. In fact, the model must self-organize to a state where the long time
average of speciations balances that of the extinctions; otherwise, the system either collapses or explodes. In
view of this, Newman’s model does not provide the hoped-for counterexample to the presence of self-
organized criticality in evolution, but does provide a simple, almost analytic model that can be used to
understand more intricate models such as Ecqlah063-651X99)09702-7

PACS numbd(s): 05.65+b, 87.10+e

I. INTRODUCTION Il. ECOLAB

In this section, we consider a model of evolution called
Ecolah Ecolab(perhaps unfortunatelys both the name of a
model and a simulation system written by the author to

rency and, in particular, has been championed by Bak i jjement that model. The ecology is described by a gener-
and Kauffman[2]. Self-organized critical phenomena are gji;eq | otka-Volterra equation, which is perhaps the sim-
characterized by a frustration between two processes. Tl}ﬁest ecological model to use:

archetypical example is that of a sandpile, where the process
of adding sand to a sandpile to make the slope of that pile
steeper is opposed by the instability of the sandpile, which
works to make the sandpile flatter once the slope passes a
critical angle. One of the most obvious manifestations of

criticality is a power law spectral behavior, although critical- o e is the difference between the birth rate and death rate
ity is by no means necessary for this power law behavior tqq; e4ch species, in the absence of competition or symbiosis.

belmamfested. N g d the field B is the interaction term between species, with the diagonal
n a recent paper, Newmd8] surveyed the field to con- o1 referring to the species’ self-limitation, which is re-

clude that the mechanism by which ecosystems are driven Qied in a simple way to the carrying capacky for that
criticality is not well understood, but that the evidence in thespecies in the environment bg; = —r. 3, . In the literature
| 1~

fossil record for power law spectra of extinction event size(e g., Strobec7], Case[8]) the interaction terms are ex-
and species lifetimes is good. Saeal. [4] present the best preséed in a non%"nalized formy; = — K /ri8;;, and ey =1

eV|der|1\|ce yet tha? thedse d'IStI‘IbLitlort]S age Ipc:cwer Ila%ibﬁowby definition.n is the species density.
ever, \ewman missed an important modet of evolu These equations are simulated on a simulator catient

lab [5,6], that is more general than those surveyed, and give%b [9]. The vectors andr are stored as dynamic arrays, the

us th_e best_ !dea yet of how evolution could be a SG|f'size of which (i.e., the system dimensiprcan change in
organized critical phenomenon. time

Newman goes further to introduce his own model of evo-

lution to make the point that the coevolutionary avalanches

that all the other modeléncluding Ecolab exhibit are not A. Linear stability analysis

necessary fo_r the obse_zrved power law behavio_r. He further |inear analysis starts with the fixed point of E@):

claims that his model is not critically self-organized. How-

ever, the mechanism that leads to power law behavior in n=-pg"1r, )

Newman’s model is precisely the same as that in Ecolab, and

that mechanism is of the nature of a frustration between two . ) ) ] o o

processes that characterizes Bak’s Sandp"e model. Wheren:O. Thel’e IS preC|Se|y one f|Xed pOInt n the Interior
of the space of population densiti€se., n such thatn;
>0) provided that all components ofare positive, giving

*Electronic address: R.Standish@unsw.edu.au rise to the following inequalities:

Over the last five years, the notion that biological evolu-
tion is aself-organized critical phenomendras gained cur-
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A =(Btr);>0, Vi. 3) general than stability of the equilibrium—the latter condition
' e implies that a local neighborhood of the equilibrium is an
This interior space is denotetl’ mathematically. absorbing set. Also, the averaging property of Lotka-Volterra

There may also be fixed points on the boundar)REfP, systems implies that the equilibrium must lie in the positive

. coneR"P. So Eq.(3) must still hold for permanence.
where one or more componentsrofire zera(corresponding + R
to an extinct speci@sThis is because the subecology with ~ Consider the boundary pointg that are missing a single
the living species onlyi.e., with the extinct species re- Specied. Then Jansen’s condition for these boundary points
moved is equivalent to the full system. IS
The stability of this point is related to the negative defi-

niteness of derivative afi at n. The components of the de- ri_Z ﬂijﬁBj>0- 7)
rivative are given by i

This set of conditions is linearly independent. Let the num-
+Bijni - (4) ber of such boundary points be denotedrigs<ng,. Then
the set of conditiong6) will have rankng= v<ng, (the num-
Substituting Eq(2) gives ber of linearly independent conditionsso that the system
has at most a probability 2'ss~” of satisfying Jansen’s per-
manence condition if the coefficients are chosen uniformly at
=—Bi(B ). (5  random. Since stability is also sufficient for permanence, the
n probability lies between 4" and 2 "sp *.

Stability of the fixed point requires that this matrix be Another rather important property iesistance to inva-

negative definite. Since theg( Ir); are all negative by virtue Sion[8]. Consider a boundary equilibriums . If it is proof

of Eq. (3), this is equivalent tg8 being negative definite or, against invasion from the missing species, then_ the full sys-
equivalently, that its,, eigenvalues all have negative real tem cannot be permanent. For the boundary points that miss
parts. Taken together with the inequalitié®, this implies @ Single species, this implies that conditiah is necessarily
that 2ng, inequalities must be satisfied for the fixed point to Satisfied for permanence, along with Ea);Thenprobablllty

be stable. This point was made by Strobgfk in a slightly ~ Of permanence is then bounded above bys2"™.
different form. (Note that Strobeck implicitly assumes that ~ The important point to take away from this section is that

11 /K0, 50 comes 1o the conclusion thatg-1 con- L B8 8 TR R S S e ood do-
ditions are required.If one were to randomly pick coeffi- q ’

cients for a Lotka-Volterra system, then it has a probabilitycreas'es exponentially with increase in species number.
of 4™ "sp of being stable, i.e., one expects ecosystems to be- )
come more unstable as the number of species incr¢a6ks C. Mutation

Adding mutation involves adding an additional operator
B. Permanence to Eq.(1):

an,

an;

=9 "i+2k BikNk

an,;

While stability is a nice mathematical property, it has -
rather less relevance when it comes to real ecologies. For n=rrn+n*gn+mutate (p.r.n), ®)
example the traditional predator-prey system studied b)(N N : S .

Lotka and Volterra has a limit cycle. The fixed point is de- here referg to e[ementwse multiplication. Th!s operator
cidedly unstable, yet the ecology frmanenin the sense extends the dlm_en3|on of the Wholg system, so is rather un-
that both species’ densities are larger than some thresholffual- The precise forr_n ohutate is not germane to the
value for all time. Hofbauer, Hutson, and Jangéd] and present argument; the interested reader is referred to the pre-

Law and Blackford 12] discuss the concept gfermanence vious publications describing [6,6,9. Suffice it to say that

in Lotka-Volterra systems, which is the property that there it adds new species according to a stochastic mechanism, and

; . ) th | h iticali | ith
a compact absorbing SBUCR"™, i.e., once a trajectory of at we would expect the criticality result to be robust wit

+ respect to changes of mutation algorithm employed.

the system has enteredt, it remains inM. They derive a
sufficient condition for permanence due to Jandgs] of the . .
form D. Self-organized criticality

Let us consider what happens to the largest eigenvalue of
FR R |, o~ ) B. Suppose that initially the system has a stable equilibrium,
2i: Pifi(Ne) Z p|< fi EJ: B”nB') =0 3p=0 in which case all the eigenvalues have negative real part. As
(6) mutations are added to the system, the largest eigenvalue
A . will increase towards zero. As it passes zero, the system
for every ng equilibrium point lying on the boundaryng; destabilizes, and the system will start to exhibit limit cycles
=0 3 i), provided the system isounded(or equivalently or chaotic behavior. As further mutations are added to the
dissipative. (Boundedness is ensured in this model bysystem, permanence is no longer satisfied and an extinction
choosing theg;; such thatg;;+8;<0,V i,j. This pre- eventwill occur. This will restore permanency to the system,
cludes symbiosis, but does allow for unstable behavior. Seand possibly even stability. So we have two frustrated pro-
[9] for a discussion of boundednes$his condition is more cesses opposed to each other, the first, mutation, which
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builds up ecosystem complexity, and the second being thmtroducing an arbitrary logistic constraint. My argument is
trend toward impermanency as the ecosystem becomes mateat the reason for this logistic constraint is that species must
complex. This is analogous to the sand being added to thimteract with each other, and the greater the number and
top of the pile, and the stability of the sandpile slope in Bak’sstrengths of these interactions, the greater the stresses are
sandpile model. that are felt by the ecosystem.
It could be argued that theaison d’dre of the Newman
IIl. THE NEWMAN MODEL model is to study the effect of coherent extinction through
) o exogenous causes. However, these will always give rise to
Newman has presented his model of evolution in a numstress distributions that are independent of species number.
ber of paper$14,15,3; this model is largely equivalentto an However, the stress distribution will ultimately be dominated
earthquake model presented I6,17]. In the biological con- by the term that does depend on the species number.
text, the model has a fixed number of species, all of which * once the stress values depend on species number, the
feel environmental stress, denoted ), which is random  gystem self-organizes so that speciations and extinctions bal-
variate with distributiorpsyes{ 7). Each species has an indi- ance on average. A trace of, can be seen in Fig. 1, and the
vidual thresholdx; such that if 7>x;, speciesi becomes distribution of lifetimes is seen in Fig. 2. The peak in the
extinct. These extinct species are then replaced by new spggrve atr=10 is an artifact of the simulation, and should be
cies, with thresholds randomly assigned from some distribuignored. The distribution actually has two regions, the inner

tion pyres X). There is one further twist to the model, in that gne 16 7< 103 having a power law with exponent —1,

the threshold values are allowed to drift over time in order 105nd the outer regioms10° having exponent= — 2. By run-

prevent the model from stagnating with every species havingiin g the experiment at different mutation rates, the lifetime

theTrrr:ainmulmbthre;[shold. I build .  thi at which the distribution changed from * to 7~ 2 was found
e Ecolab software allows us to build a variant of t Sto be inversely proportional to the mutation rate.

model that allows the number of species to vary over time. | comparing the result of my variation with the original

When the model was first implemented, the system underge\yman model, it should be noted that the power law expo-
went a “mutation catastrophe,” in which the number of SP€-hent in Newman'’s original model is 1 out to a time 1f
cies exploded. This is similar to what happens in the ECOIabdnd decays exponentially after that. In my version, the same

modlzl when ttTﬁ Tttkj]tat'on rgte 'Sf set tc_>ot_h|gh. Notrmarily, |?Zlnb ower law exponent was observed out tg,1and then ap-
would expect that the hnumber of Speciation events shou ears to change to a faster power law decay, although the

proportional to the number of species. However, this leads t rror bars are sufficiently large not to rule out an exponential

an excess of speciation over extinctions. decay. In each of these models, the lifetimé &f 1/g, re-

" The relsoluubon of th'i’. corlutm(tikr]um IS tt)o re?uwe '.[hat.thespectively, is roughly the lifetime that a maximally fit organ-
Stress vajues be proportional to the number of Species, 1.8.,55, (one with a maximal valug;) can survive before suc-

n=nNgn’, where »' is drawn from some distribution cumbing to mutation pressures.
Pswes 7). The justification for making this assumption can
be seen by considering a simplified model of Ecdledlled
Ecolab—-, described in the next section. Of course, in New- IV. THE ECOLAB —— MODEL
man’s original modelng, is a constant, and so his model is
consistent with this modification.

Wilke and Martinetz[18] examined a similar model, in
which they label the mutation ratg and consider finitd
rather thanf=0 as | do here. They too note the conundrum ]
of exponential growth in species number, and resolve it by ni=(r;—7n)n;. 9

In this section, we will consider a simplification of the
Ecolab model where the interaction ter@sg;;n; are re-
placed by a random variatg(t) from a suitable distribution:
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FIG. 2. Distribution of species lifetimes in the generalized New- FIG. 3. Distribution of species lifetimes in Ecolab.
man model with Gaussian stress distribution.
Since 7; is effectively the sum of a large number of inde- _
7 clively the sum of a arg p(>7)= | p(x)p(>7|x)dx
pendent quantities, its distribution will tend to be normal,

and the deviationcontrolling how largen; get9 will be
proportional tong,, the connectancgroportion of nonzero :J Pthresi X)
elements inB) and the interaction strength. This is why
stresses in the Newman model must be proportionalsto 1 dx
When #; exceeds; for any significant period of time, spe- :J pthresr(x)gTd_dga (1D
ciesi becomes extinct. Sincg;(t) is a continuous function 0 3
of n(t) which is itself a continuous function af there will «
be a correlationy(t) 5(t+ 1) >0, Yr<7,, 37,>0. Equa- Where&=JoPsrest7)d7. .
tion (9) connects the full Ecolab model with the Newman Assume the following inequalities hold:
model. _

In order to make the analysis simpler, we assume tthat Prrest{ X) <K1PsrestX), V' X,
are real values, rather than integers as in Ecolab. In order to
detect when extinction happens, we take an arbitrary thresh-
old ¢ such that ifn;<o, species is extinct.

dx

X
fo Pstresé 7)d 77

=KoPstrestX), V¥ X<X¢, I Xc.
(12

Without loss of generalitypies{X) is taken to be the uni-
form distribution between 0 and 1, and is zero outside this
Figure 2 shows the distribution of species lifetimiéme  interval. pges{X) is positive for all positivex, with the large
from speciation to extinctionin the augmented Newman X tail needed to establish power law behavitb]. In this
model. This figure is not normalized, since a power kfiv ~ case, the constant§, andK; correspond to the inverses of
has an infinite integral. So the abscissa of the graph is ndhe maximum and minimum qfy,es(X) over the unit inter-
significant but the slope is. The lines are fitted by linearval, andx.=1. Let us introducgfczféCpstresgx)dx as being
regression. Authors often quote a correlation coefficientihe change of variable equivalent xf. In the case of uni-
however, this is generally meaningless on a log-log plotform threshold distribution, and monotonic stress distribu-
Even the value of the slope is meant to be an indication onlytion, 1— &, is the proportion of stress events that overwhelm
as the large relative error at high lifetime values can lead tehe hardiest of species. The inverse of this proportion is a
significant errors in the computed slope. time scale above which the lifetime distribution must decay

Figure 3 shows the lifetime distribution for Ecolab, which exponentially. In order to observe power law behavior, the
has a slope of-2 for lifetimes less than 100 but 1 for stress distribution must be chosen so that 1.
larger lifetimes. At still larger times#>0.1/u), the distri- Substituting Eq(12) into Eq.(11) generates the following
bution turns over, decaying exponentially. Previously pub-nequality:
lished versions of this grapl6] only show the smaller life-
time behavior. & dx

Consider now the probabilitg(> 7|x) that a species with Kofo pstreséx)gTd_gdf
thresholdx will become extinct after timé= 7 in the New-
man model. Since time is discrete in this model, this is sim- 1 dx
ply the probability that the stresg does not exceexfor the =p(> T)SKJO pstreséx)de_gdfy
first 7 steps:

V. DISTRIBUTION OF SPECIES LIFETIMES

7+1
T c 1
p(>1]x)= (10) Ko =P =Ky 13

X
fo Pstresé 7)d 77

Now the distributionp(>7) of species having lifetimes  SINCEPsyestX) = d&/dx and where= [ *PsyresfX) dX.
is just the above quantity, integrated over the distribution of Now p(7)=p(>7—1)—p(>7), so the following in-
thresholds: equality is obtained:
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FIG. 4. Distribution of species lifetimes in the generalized New-

7—1
man model, Withpgyes{ 7) < (7+ o) ~32.
‘ p(>7l0)= | I perestm)dmod s+ -d7,1. (18)

(Koée—Kyp) 7+ K€l (Ki—Koéd) 7+ Ky Lets us first deal with sufficient conditions for inequality
7+ 1) sPiNs—""71 (17) to be satisfied, which are
(14 n<r—Inglr, V i<t (19

Assuming thatr<(1—&) L él=[1+r(1— &)1+ - =~1,

this inequality may be simplified: <r,aso<l. (20

Therefore, a lower bound fqu(>7|r) is

Ko—Kjp)7+K Ki—Kg)7+K
(Ko—Ky) o$p(7)$( 1~ Ko) L s )
T(7+1) T(t+1) r
p(>7|r)2 B Pstresé M d 77| . (21)
This result indicates that there are two domains, the first

being whent<<Ky/(K;—Kj), where the lifetime distribu- Now consider the following relation:
tion is a power law with exponent 2. This domain is more
pronounced the closé{ is to K, i.e., the closepyesiX) n(t+1)=(1+r—n)n(t).

iS t0 Psyess The other domain occurs wher>K,/(K;

—K,), where any power law will have an exponent less tharor the species not to go extinct befdre 7, we requirez,

—1. In between, there will be a transition between the two<1+r, V t<r. Therefore,

domains. This result is not terribly strong, as the inequality

can also be satisfied by any distribution falling off faster than -
. . p(>7ir)<

a power law. However, it does contradict the results of the

time-average approximatiofiTAA) theory of Sneppen and

Newman[17] in the case of the Lorentzian distribution,  Now find constant&, andK; so that

where a power law with exponent(De., a flat distributioh

is predicted. While a flat distribution is manifestly ridiculous, KoPstreséT)=<pr(r), ¥V r<re, 3 r,

others are not. The TAA predicts a power law of 1/3 for a -

power law stress distribution with exponent3/2. Figure 4 <KiPsrestr 1), @3

shows the observed lifetime distribution in this case, and theyhere p,(r) is the probability distribution of reproduction

distribution never flattens out more than*. rates. Sincg(>7)=[p,(r)p(>7|r)dr, we find
Now lets us turn our attention to the Ecolab—— model to

(r+1) 7
j_x Pstresé 7)d 7]} . (22

see if a similar relationship can be derived. In what follows, re r T
the species indekis dropped. Integrating Eq9) gives us Kof Pstresé!) f_wpstresé n)dn| dr<p(>7)
— el o~ 7(9)ds (r+1) T
n(t)=noe ' SKlf Pstresé" 1) f_w Pstresé W)dn} dr,

and taking logarithms gives
Kop¢

K
t <p(>r)=—. (24)
Inn(t):f r—n(s)ds, T
0
Now, sincep(7)=p(>7)—p(>7+1),
sinceng=1 for all new species.

For the species to become extinct after titver, we Kope Ky <p(7)<ﬁ_ Kop¢ (25
require T 7+l T




1550 RUSSELL K. STANDISH PRE 59

(Kopi—Kyq) 7+ Kopl (Ki—KopD) 7+K, tion of constant species number hides essential interspecies
=

= = . i
Hr+ 1) p(7 A+ 1) connections. Both models demonstrate a power law exponent

(26) near—2 at small time scales, agreeing with the fossil record
(after Sneppert al. [19]), turning into a gentler power law
Again, like the Newman model, we have two domains ofwith exponent less thar 1 at longer times.
power law possible, an inner domain where the power law is
—2, and an outer domain where any power law is capped by
—1. This is what is seen in Fig. 3.
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